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We investigate strain effects on the magnetic anisotropy energy (MAE) and the magnetic moment
of Y2Fe14B on the basis of density functional theory. We find that the MAE is significantly
enhanced upon compression of the lattice. By applying second-order perturbation theory, the
coupling among orbitals that is the most significant in enhancing the perpendicular magnetic
anisotropy by the compression is identified to be the 3d#x2!y2 ! 3d#xy coupling at the Fe j2 site,
thereby we emphasize importance of both the effect of the local density of states and the orbital
couplings. VC 2014 Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4883840]

Strain effects on the magnetic properties of sintered-
magnet main phases are important, because sintering and
post-sinter thermal processes inevitably induce residual strain.
Although a few experimental studies have been made on the
dependence of strain for intermetallic compounds consisting
of a rare-earth element, iron, and boron (R2Fe14B),1–4 the
present understanding of this issue is far from complete. In
particular, the magnetocrystalline anisotropy, which is a key
factor for understanding the high coercivity of Nd-Fe-B sin-
tered permanent magnets having Nd2Fe14B as the main
phase,5–7 is not well understood. In contrast with localized 4f
electrons, which are relatively insensitive to their surrounding
environment, 5d electrons and Fe 3d electrons are typically
strongly affected by lattice strain due to their itinerancy. In
this sense, Y2Fe14B is suitable for studying the effects of
strain on itinerant d electrons, because Y is a prototypical f 0

example of rare-earth elements. While the previous calcula-
tions for Y2Fe14B have provided insights into magnetic
moments and the magnetic anisotropy of unstrained single
crystals,8–12 strain effects have not been examined from first
principles.

In this work, we report a first-principles study of the
strain effects for Y2Fe14B. We show that the magnetic ani-
sotropy of Y2Fe14B comes mostly from Fe d electrons,
while the contribution of Y d electrons is considerably
smaller. We find the magnetic anisotropy is significantly
enhanced upon compression of the lattice. We also clarify
the contribution of each Fe site to the magnetic anisotropy
by a quantitative approach using second-order perturbation
theory, where the coupling at an Fe j2 site among occupied
and unoccupied states of 3dx2!y2 and 3dxy components with

the same spin is found to be prominent in enhancing the
perpendicular anisotropy, i.e., perpendicular to the (001)
plane (c plane). Our method to identify dominant d-orbital
couplings should be a practical tool for uncovering insights
for the design of microstructures and even compounds for
permanent magnets, as well as nanostructures with high
magnetocrystalline anisotropy.13,14

The electronic-structure calculations were made within
density functional theory using the OpenMX code,15 in
which pseudoatomic-orbital basis sets and norm-conserving
pseudopotentials are used. We employed the Perdew–
Burke–Ernzerhof (PBE) exchange-correlation functional in
the generalized gradient approximation (GGA). Same as
Nd2Fe14B, Y2Fe14B has a tetragonal unit cell with P42/mnm
space-group symmetry, containing 68 atoms with six crystal-
lographically distinct Fe sites, two Y sites, and one B
site.16–18 In our calculations, the atomic positions are fully
relaxed with the criteria for convergence of the total energy
and the force acting on atoms of 10!6 Hartree and 10!5

Hartree/Bohr, respectively. We carefully checked the con-
vergence of the total energy with respect to the number of k
points, finding a 9" 9" 7 grid to be sufficiently accurate.
The magnetic anisotropy energy (MAE) is defined as the
change in the total energy by the rotation of the magnetic
moment from the c direction to the a direction, i.e., the [100]
direction. Unless otherwise stated, the MAE is calculated
self-consistently, where the Kohn–Sham Hamiltonian
includes the one-body spin–orbit coupling explicitly as a sca-
lar triple product of the electric field, the momentum, and the
Pauli matrix. In addition, we employ our approach using per-
turbation theory, which is compared with self-consistent cal-
culations, to decompose the MAE into contributions from
each orbital coupling. In this approach, the following formu-
lae are used to analyze contributions from each atomic site s
as well as couplings among specific atomic orbitals l and !:
ESO ¼

P
sE

s
SO; Es

SO ¼
P

l!E
sl!
SO , and
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where i and j are occupied and unoccupied Kohn–Sham
eigenstates. Note that the indices i, j, l, and ! include the
spin index. In this perturbation scheme, the spin–orbit cou-
pling is approximated as HSO ¼ nl % s considering only on-
site contributions of d orbitals. The coupling constants n for
d electrons are nFe¼ 62.69 meV and nY¼ 41.11 meV, as
obtained by calculations for atoms in Ref. 19. By projecting
onto the atomic orbitals l and ! at a specific atomic site s,
we can use the matrix elements of HSO for each atomic or-
bital. The matrix elements hsljHSOjs!i for a single atom
have been reported for the purpose of qualitative understand-
ing.20,21 In contrast, we will use the matrix elements for
quantitative identifications of the MAE contributions based
on the above formulae, as discussed below. The MAE is cal-
culated by rotating the spins of the Bloch states i and j,
whereas the spatial part is kept fixed.

As reported later in detail, we find the magnetic anisot-
ropy of Y2Fe14B is enhanced upon compression of the lat-
tice. Here, we first describe our most significant findings: By
examining all the Fe and Y sites as well as all the possible
d-orbital couplings by our perturbation scheme, we have
identified that the dx2!y2 and dxy orbitals at the Fe j2 site play
an essential role. Their local density of states (LDOS) and
the positions of nearest-neighbor (NN) atoms of the Fe j2 site
are shown in Fig. 1. The j2 site in Y2Fe14B are sandwiched
by double kagome layers16 of Fe having large in-plane inter-
action, while Y atoms are located nearly along the c axis as
seen in Fig. 1(b). This local environment of the j2 site makes
the band widths of dx2!y2 and dxy more sensitive to the com-
pression than the other orbitals. As a result, both peaks of the
d#x2!y2 and d#xy states just above the Fermi energy shift down-
wards by compression, which results in a significant increase
in the LDOS near the Fermi energy.

Since the LDOS is proportional to the absolute square of
the coefficients hijsli and hs!jji for the Bloch states i and j
in Eq. (1), the high LDOS near the Fermi energy contributes

markedly to the MAE. On the other hand, in considering the
matrix element hsljHSOjs!i, the coupling between the dx2!y2

and dxy orbitals, which correspond to angular momenta of
62!h in the z direction, with parallel spins makes the largest
contribution to the anisotropy in the z direction, as identified
by Kyuno et al.20 Consequently, combining these two fac-
tors, couplings between the occupied (unoccupied) d#x2!y2

component and the unoccupied (occupied) d#xy component,
respectively, close to the Fermi energy are explained as the
most significant origin of the MAE enhancement upon
compression.

Coming back to the unstrained Y2Fe14B single crystal,
the calculated value of the magnetic moment is 31.3 lB/f.u.,
in excellent agreement with the experimental value of
31.4 lB/f.u. measured at 4.2 K.1 The electronic states in the
vicinity of the Fermi energy are mainly associated with the
Fe 3d and the Y 4d orbitals. The spin polarization of Fe 3d
bands is much larger than that of Y 4d bands. As for the
MAE, the magnetic easy axis of Y2Fe14B is the c axis and
this result qualitatively agrees with experiments, even though
the calculated value, 0.45 MJ/m3, underestimates the experi-
mental one (0.77 MJ/m3 at 4.2 K (Ref. 6)). This discrepancy
in the MAE has been understood as being due to a limitation
of the present first-principles methods. It should be noted
that the antiferromagnetic coupling among Fe 3d and Nd 5d
orbitals plays a crucial role in the appearance of strong mag-
netic anisotropy in Nd2Fe14B (4.3 MJ/m3 at room tempera-
ture6). The strong anisotropy of the Nd 4f electrons cannot
couple with the Fe 3d electrons directly, where most of the
magnetic moment of the compound comes from.

We now proceed to the lattice-constant dependence of
the magnetic moments and the magnetic anisotropy for
Y2Fe14B, where the lattice constants, i.e., a and c, are
changed by a 3% compression and a 3% expansion inde-
pendently. Figure 2 shows the behavior of the MAE and
magnetic moments with respect to the variation in the lattice
constants. The MAE is significantly enhanced upon com-
pression of the lattice, while the magnetic moment decreases.
By the compression of both a and c by 3%, the MAE
increases from 0.45 MJ/m3 (2.6 meV/u.c.) to 2.16 MJ/m3

(11.2 meV/u.c.), while the magnetic moment decreases from
31.3 lB to 25.7 lB. The changes in the MAE and the mag-
netic moment are much smaller for the expansion. As seen in

FIG. 1. (a) The LDOS for 3%-
compressed Y2Fe14B at the Fe j2 site
projected onto the 3dx2!y2 and 3dxy

components. The shaded curves are the
calculated results in the case without
compression. (b) Atomic positions of
the NN atoms of the Fe j2 site in
Y2Fe14B. The Kohn–Sham eigene-
nergy e is referenced to the Fermi
energy.
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Fig. 1(b), the number of NN Fe atoms for the j2 site is 12.
The average of these NN distances changes from 2.67 Å to
2.59 Å upon compression, which is comparable with that for
the ferromagnetic fcc Fe theoretically determined as 2.57 Å
and is much larger than that for bcc Fe of 2.45 Å. This is con-
sistent with the fact that R2Fe14B compounds have much
lower Curie temperatures compared with bcc Fe.

The DOS of the compressed and expanded Y2Fe14B are
compared with the case for the equilibrium lattice constants
in Fig. 3(a). The figure shows that the majority-spin (up-spin)
d bands become partially occupied upon compression of the
lattice, where the DOS attributable to d electrons becomes
broader indicating the enhancement of the electron itiner-
ancy. In contrast, the DOS of the expanded system exhibits
slight narrowing of the d-band width attributable to the local-
ization of d electrons. To identify the origin of the strong
enhancement of the MAE and the decrease in the magnetic
moment, we decompose the total MAE and the magnetic
moment into contributions from each atomic site. We
decompose the magnetic moment by the LDOS projected

onto Fe atomic orbitals [Fig. 3(b)]. Without strain, the j2 site
has the largest magnetic moment of 2.74 lB, while the e site
exhibits the smallest magnetic moment of 2.13 lB, as seen in
Fig. 3(c). Under the compression, they decrease to 2.54 lB

and 1.73 lB, respectively. As Fig. 3(c) shows, the Fe j1 site
has the largest changes under the compression and the expan-
sion. Upon compression, the magnetic moment at the Fe j1
site decreases considerably from 2.24 lB to 1.40 lB. This
drastic decrease in the magnetic moment can be understood
from the fact that the up-spin d bands at the j1 site, which are
essentially fully occupied for the case without strain, become
partially occupied by the compression-induced modification
to the orbital hybridization.22

In Table I, the total MAE calculated by the perturbation
scheme is compared with that by the self-consistent calcula-
tions that explicitly include the spin–orbit coupling in the
Kohn–Sham Hamiltonian. It is clearly seen that the change
in the total MAE by the compression obtained by the self-
consistent calculations is reproduced by the perturbation
scheme, even though the energy scale is much smaller than
the chemical accuracy. The error of the perturbation scheme
compared with the self-consistent one is mainly attributed to
the on-site approximation with the form of HSO ¼ nl % s. In
addition, we also compare the perturbation scheme with
self-consistent calculations for another intermetallic com-
pound, YFe3, in which the MAE obtained by the perturbation
scheme (!0.65 MJ/m3) differs only 0.15 MJ/m3 from the
self-consistent MAE, !0.80 MJ/m3.

Next, we discuss the MAE of inequivalent Fe sites as
well as the f and g sites of Y listed in Table I. We observe that
the symmetry of the MAE is lower than that of the atomic
structure for 16k1, 16k2, and 4c sites; e.g., among 16 k1 sites,
eight k1 sites exhibit one value for the site-decomposed MAE,
while the other eight k1 sites exhibit another. Note that the
symmetry of the atomic structure remains unchanged with
strain. For each case, Es

SOðxÞ becomes inequivalent, providing
two different values, while the original site symmetry is
retained in Es

SOðzÞ. For ESO (x), the spins of the Bloch states
point in the x direction. The symmetry created by a set of vec-
tor quantities can be lower than that created by scalar quanti-
ties, i.e., the atomic positions in this case. It is clearly seen
that the MAE of Y2Fe14B essentially comes from the Fe sub-
lattice, where the contribution of Y atoms is negligibly small.
For the case of the equilibrium lattice constants, the

FIG. 2. (a) The MAE and (b) the magnetic moment of Y2Fe14B as a function
of the lattice constants.

FIG. 3. (a) The DOS for Y2Fe14B with uniform compression and expansion by 3% in the lattice constants compared with the case for the equilibrium lattice
constants (shaded). The single-electron energy is referenced to the Fermi energy. (b) The LDOS of crystallographically inequivalent Fe sites for Y2Fe14B with
the lattice constants compressed uniformly by 3%. The LDOS for the case of the equilibrium lattice constants is shown by shading. (c) Magnetic moment of
crystallographically inequivalent Fe sites for Y2Fe14B with the equilibrium lattice constants and with the lattice constants compressed and expanded uniformly
by 3%.
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contribution from the j1 site is most significant for the perpen-
dicular anisotropy. This fact is consistent with the fact that the
LDOS at the Fermi energy for the up spin is among the high-
est for the j1 site, as seen in Fig. 3(b). It is also evident that the
enhancement of the MAE by the compression comes from
that at the Fe j2 site, where the site-decomposed MAE
increases from 0.06 to 0.58 meV. This enhancement of the
MAE at the j2 site is closely related to the increase in the
LDOS in the vicinity of the Fermi energy for the down spin
shown in Fig. 3(b).

We also analyze the couplings among specific atomic
orbitals on the basis of Esl!

SO . Table II shows the MAE contri-
bution from couplings among the 3d orbitals at the j2 site.
We can clearly see that the enhancement of the MAE is
related to an increase in the coupling among dx2!y2 and dxy

orbitals from !0.55 to 0.23 meV: The contribution even
changes from in-plane anisotropy to perpendicular anisot-
ropy under compression. In more detail, the contribution of
dx2!y2 ! dxy coupling at the j2 site is most significant for the

down spins. Under compression, the coupling among d#x2!y2

and d#xy increases from 0.79 meV to 1.43 meV. The other

MAE contributions for the compressed system from these d

orbitals at the j2 site are !1.36 meV for d#x2!y2 ! d"xy,

!0.11 meV for d"x2!y2 ! d#xy, and 0.27 meV for d"x2!y2 ! d"xy.

We also found that couplings among dx2!y2 and dxy orbitals

at the e site have an increase in the MAE upon compression
from !0.06 to 0.45 meV, where the coupling among down
spins contributes to a MAE change from 0.94 to 1.37 meV.

In summary, we investigated the dependence of the
MAE of Y2Fe14B on the lattice constants by using
first-principles calculations. We have found that the mag-
netic anisotropy of Y2Fe14B comes from the 3d electrons of
Fe atoms. The MAE is enhanced by lattice compression. We
also proposed a convenient and computationally inexpensive
method, based on second-order perturbation theory, to quan-
tify the contribution of each atomic orbital to the MAE. This
method quantitatively considers both the effect of the LDOS

through matrix elements such as hijsli and the effect of or-
bital couplings hsljHSOjs!i. With this method, we clarified
that the Fe j2 site makes the highest contribution to the
enhanced MAE in the compressed system, where coupling
among the 3d#x2!y2 and 3d#xy orbitals of the j2 site plays the
most significant role. With predictive descriptions of cou-
plings among atomic orbitals for the magnetic anisotropy,
our method should be useful for computational designs of
permanent-magnet materials utilizing the anisotropy of itin-
erant d electrons, even without the use of 4f electrons of
rare-earth elements. On the other hand, it is also interesting
to clarify the anisotropy couplings among the Fe sublattice
and the 4f electrons.
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