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Aiming construction of first-principles phase

diagrams, we are trying to develop methods to

evaluate free energies of metallic alloys. The

free energy is decomposed into a few con-

tributions, including the phonon effects and

the configrational entropy as the most impor-

tant ones. Moreover, other components and

couplings among various contributions signifi-

cantly affects phase equilibria, e.g., phase tran-

sition temperatures. Indeed, the spin-phonon

coupling changes the Curie temperature of bcc

Fe more than 500 K [1].

In this project, we developed a method to

perform first-principles phonon calculations to

evaluate Gibbs free energies efficiently [2]. In

our volume integral of pressure (VIP) method,

multiple phonon calculations with varying the

volume are avoided in incorporating the ef-

fect of thermal expansion. This feature makes

the Gibbs-energy evaluation possible for high-

temperature austenite phases that is in general

difficult for conventional volume-varied ap-

proaches, by combining the VIP method with

the self-consistent phonon (SCPh) method [3]

implementd in the ALAMODE code [4]. In

applications to bcc Ti [2], we demonstrated

that the electron-phonon coupling changes

the austenite-martensite phase-transition tem-

pearature more than 200 K as shown in Fig. 1.

We also applied the VIP method to Ti-Al al-

loys that require huge computational costs.

Conventional CALPHAD approach largely

relies on experimental data. In some cases,

mixing enthalpies are additionally evaluated

from first principles [5]. Evaluation of free en-

ergies from first principles should further ex-

pand possible range of Gibbs-energy database

to experimentally unavailable cases. As

one of approaches to achive the goal above,

we also developed a method to include the

spin-electron coupling in the evaluation of

exchange-coupling parameters [6].
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Figure 1: Difference in the Gibbs free energy be-

tween bcc and hcp Ti from 300 K to 2000 K.

The origin of the DFT calculations is shifted to

the CALPHAD data at 300 K, i.e., changes from

300 K are evaluated from first principles. Super-

scripts “disp” indicate that calculations include the

electron-phonon coupling as effects of vibrational

atomic displacements.
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